Henry David Thoreau

Thank God men cannot fly, and lay waste the sky as well as the earth.

Mohandas K. Gandhi

There is a sufficiency in the world for man's need but not for man's greed.

Robert Orben

There's so much pollution in the air now that if it weren't for our lungs there'd be no place to put it all.

Alan M. Eddison

Modern technology,Owes ecology,An apology.

Henrik Tikkanen

Because we don't think about future generations, they will never forget us.

Showing posts with label processes. Show all posts
Showing posts with label processes. Show all posts

Tuesday, January 31, 2012

Processes that affect community structure

              Interactions between species, such as predation, competition, parasitism, and an array of mutualisms, have a profound influence on the structure of communities. The loss of a species or a change in its abundance, particularly for species that interact with many others, can have a marked effect on ecological processes throughout fragmented
landscapes. Changes to predator-prey relationships, for example, have been revealed by studies of the level of predationon birds’ nests in fragmented landscapes (Wilcove 1985). An increase in the amount of forest edge, a direct consequence of fragmentation, increases the opportunity for generalist predators associated with edges or modified land-uses to prey on birds that nest in forest fragments. In Sweden, elevated levels of nest predation (on artificial eggs in experimental nests) were recorded in agricultural land and at forest edges compared with the interior of forests (Andrén and Angelstam 1988). Approximately 45% of nests at the forest edge were preyed upon compared with less than 10% at distances >200 m into the forest. At the landscape scale, nest predation occurred at a greater rate in agricultural and fragmented forest landscapes than in largely forested landscapes (Andrén 1992). The relative abundance of different corvid species, the main nest predators, varied in relation to landscape composition. 

               The hooded crow (Corvus corone cornix) occurred in greatest abundance in heavily cleared landscapes and was primarily responsible for the greater predation pressure recorded at forest edges. Many mutualisms involve interactions between plants and animals, such as occurs in the pollination of flowering plants by invertebrates, birds or mammals. A change in the occurrence or abundance of animal vectors, as a consequence of fragmentation, can disrupt this process. For many plant species, habitat fragmentation has a negative effect on reproductive success, measured in terms of seed or fruit production, although the relative impact varies among species (Aguilar et al. 2006). Plants that are self-incompatible (i.e. that depend on pollen transfer from another plant) are more susceptible to reduced reproductive success than are self-compatible species. This difference is consistent with an expectation that pollination by animals will be less effective in small and isolated fragments. However, pollinators are a diverse group and they respond to fragmentation in a variety of ways (Hobbs and Yates 2003). Changes in ecological processes in fragments and through out fragmented landscapes are complex and poorly understood. 

                Disrupted interactions between species may have flow-on effects to many other species at other trophic levels. However, the kinds of changes to species interactions and ecological processes vary between ecosystems and regions because they depend on the particular sets of species that occur. In parts of North America, nest parasitism by the brown-headed cowbird (Molothrus ater) has a marked effect on bird communities in fragments (Brittingham and Temple 1983); while in eastern Australia, bird communities in small fragments may be greatly affected by aggressive competition from the noisy miner (Manorina melanocephala) (Grey et al. 1997). Both of these examples are idiosyncratic to their region. They illustrate the difficulty of generalizing the effects of habitat fragmentation, and highlight the importance of understanding the consequences of landscape change in relation to the environment, context and biota of a particular region.

Wednesday, January 11, 2012

Processes that affect species in fragmented landscapes

                The size of any population is determined by the balance between four parameters: births, deaths, immigration, and emigration. Population size is increased by births and immigration of individuals, while deaths and emigration of individuals reduce population size. In fragmented landscapes, these population parameters are influenced by several categories of processes.    

Deterministic processes

                Many factors that affect populations in fragmented landscapes are relatively predictable in their effect. These factors are not necessarily a direct consequence of habitat fragmentation, but arise from land uses typically associated with subdivision. Populations may decline due to deaths of individuals from the use of pesticides, insecticides or other chemicals; hunting by humans; harvesting and removal of plants; and construction of roads with ensuing road kills of animals. For example, in Amazonian forests, subsistence hunting by people compounds the effects of forest fragmentation for large vertebrates such as the lowland tapir (Tapir terrestris) and white-lipped peccary (Tayassu pecari), and contributes to their local extinction (Peres 2001). Commonly, populations are also affected by factors such as logging, grazing by domestic stock, or altered disturbance regimes that modify the quality of habitats and affect population growth. For example, in Kibale National Park, an isolated forest in Uganda, logging has resulted in long-term reduction in the density of groups of the blue monkey (Cercopithecus mitza) in heavily logged areas: in contrast, populations of black and white colobus (Colobus guereza) are higher in regrowth forests than in unlogged forest (Chapman et al. 2000). Deterministic processes are particularly important influences on the status of plant species in fragments (Hobbs and Yates 2003).

Isolation

                 Isolation of populations is a fundamental consequence of habitat fragmentation: it affects local populations by restricting immigration and emigration. Isolation is influenced not only by the distance between habitats but also by the effects of human land-use on the ability of organisms to move (or for seeds and spores to be dispersed) through the landscape. Highways, railway lines, and water channels impose barriers to movement, while extensive croplands or urban development create hostile environments for many organisms to move through. Species differ in sensitivity to isolation depending on their type of movement, scale of movement, whether they are nocturnal or diurnal, and their response to landscape change. Populations of one species may be highly isolated, while in the same landscape individuals of another species can move freely.Isolation affects several types of movements, including: (i) regular movements of individuals between parts of the landscape to obtain different requirements (food, shelter, breeding sites); (ii) seasonal or migratory movements of species at regional, continental or inter-continental scales; and (iii) dispersal movements (immigration, emigration) between fragments, which may supplement population numbers, increase the exchange of genes, or assist recolonization if a local population has disappeared. In Western Australia, dispersal movements of the blue breasted fairy-wren (Malurus pulcherrimus) are affected by the isolation of fragments (Brooker and Brooker 2002). There is greater mortality of individuals during dispersal in poorly connected areas than in well-connected areas, with this difference in survival during dispersal being a key factor determining the persistence of the species in local areas. For many organisms, detrimental effects of isolation are reduced, at least in part, by habitat components that enhance connectivity in the landscape (Saunders and Hobbs 1991; Bennett 1999). These include continuous “corridors” or “stepping stones” of habitat that assist movements (Haddad et al. 2003), or human land-uses (such as coffee-plantations, scattered trees in pasture) that may be relatively benign environments for many species (Daily et al. 2003). In tropical regions, one of the strongest influences on the persistence of species in forest fragments is their ability to live in, or move through, modified “countryside” habitats (Gascon et al. 1999; Sekercioglu et al. 2002).

Stochastic processes

                When populations become small and isolated, they become vulnerable to a number of stochastic (or chance) processes that may pose little threat to larger populations. Stochastic processes include
the following.
  • Stochastic variation in demographic parameters such as birth rate, death rate and the sex ratio of offspring. 
  • Loss of genetic variation, which may occur due to inbreeding, genetic drift, or a founder effect from a small initial population size. A decline in genetic diversity may make a population more vulnerable to recessive lethal alleles or to changing environmental conditions. 
  • Fluctuations in the environment, such as variation in rainfall and food sources, which affect birth and death rates in populations. 
  •  Small isolated populations are particularly vulnerable to catastrophic events such as flood, fire, drought or hurricanes. A wildfire, for example, may eliminate a small local population where as in extensive habitats some individuals survive and provide a source for recolonization.

Saturday, December 10, 2011

Changes to ecosystem processes

              Removal of large tracts of native vegetation changes physical processes, such as those relating to solar radiation and the fluxes of wind and water (Saunders et al. 1991). The greatest impact on fragments occurs at their boundaries; small remnants and those with complex shapes experience the strongest “edge effects”. For example, the micro climate at a forest edge adjacent to cleared land differs from that of the forest interior in attributes such as incident light, humidity, ground and air temperature, and wind speed. In turn, these physical changes affect biological processes such as litter decomposition and nutrient cycling, and the structure and composition of vegetation. Changes to biophysical processes from land use in the surrounding environment, such as the use of fertilizers on farmland, alterations to drainage patterns and water flows, and the presence of exotic plants and animals, also have spill-over effects in fragments. 

               Many native vegetation communities are resistant to invasion by exotic plant species unless they are disturbed. Grazing by domestic stock and altered nutrient levels can facilitate the invasion of exotic species of plants, which markedly alters the vegetation in fragments (Hobbs and Yates 2003) and habitats for animals. The intensity of edge effects in fragments and the distance over which they act varies between processes and between ecosystems. In tropical forests in the Brazilian Amazon, for example, changes in soil moisture content, vapor pressure deficit, and the number of tree fall gaps extend about 50 m into the forest, whereas the invasion of disturbance-adapted butterflies and beetles and elevated tree mortality extend 200 m or more from the forest edge (Laurance 2008). 

               In most situations, changes at edges are generally detrimental to conservation values because they modify formerly intact habitats. However, in some circumstances edges are deliberately managed to achieve specific outcomes. Manipulation of edges is used to enhance the abundance of game species such as deer, pheasants and grouse. In England, open linear “rides” in woods may be actively managed to increase incident light and early succession habitat for butterflies and other wildlife (Ferris-Kaan 1995). Changes to biophysical processes frequently have profound effects for entire landscapes. 

              In highly fragmented landscapes in which most fragments are small or have linear shapes, there may be little interior habitat that is buffered from edge effects. Changes that occur to individualfragments accumulate across the landscape. Changes to biophysical processes such as hydrological regimes can also affect entire landscapes. In the Western Australian wheat belt, massive loss of native vegetation has resulted in a rise in the level of groundwater, bringing stored salt (NaCl) to the surface where it accumulates and reduces agricultural productivity and transforms native vegetation (Hobbs 1993).

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More