Henry David Thoreau

Thank God men cannot fly, and lay waste the sky as well as the earth.

Mohandas K. Gandhi

There is a sufficiency in the world for man's need but not for man's greed.

Robert Orben

There's so much pollution in the air now that if it weren't for our lungs there'd be no place to put it all.

Alan M. Eddison

Modern technology,Owes ecology,An apology.

Henrik Tikkanen

Because we don't think about future generations, they will never forget us.

Showing posts with label exploitation. Show all posts
Showing posts with label exploitation. Show all posts

Saturday, June 1, 2013

Hunting and plant community dynamics



        Although the direct impacts of defaunation driven by overhunting can be predicted to some degree, higher-order indirect effects on community structure remain poorly understood since Redford’s (1992) seminal paper and may have profound, long-term consequences for the persistence of other taxa, and the structure, productivity and resilience of terrestrial ecosystems (Cunningham et al. 2009). Severe population declines or extirpation of the world’s megafauna may result in dramatic changes to ecosystems, some of which have already been empirically demonstrated, while others have yet to be documented or remain inexact. Large vertebrates often have a profound impact on food webs and community dynamics through mobile-linkage mutualisms, seed predation, and seedling and sapling herbivory. Plant communities in tropical forests depleted of their megafauna may experience pollinationbottlenecks, reduced seed dispersal, monodominance of seedling cohorts, altered patterns of seedling recruitment, other shifts in the relative abundance of species, and various forms of functional compensation (Cordeiro and Howe 2003; Peres and Roosmalen 2003; Wang et al. 2007; Terborgh et al. 2008; Chapter 3). On the other hand, the net effects of large mammal defaunation depends on how the balance of interactions are affected by population declines in both mutualists (e.g. highquality seed dispersers) and herbivores (e.g. seed predators) (Wright 2003). For example, significant changes in population densities in wild pigs (Suidae) and several other ungulates and rodents, which are active seed predators, may have a major effect on seed and seedling survival and forest regeneration (Curran and Webb 2000). 

               Tropical forest floras are most dependent on large-vertebrate dispersers, with as many as 97% of all tree, woody liana and epiphyte species bearing fruits and seeds that are morphologically adapted to endozoochorous (passing through the gut of an animal) dispersal (Peres and Roosmalen 2003). Successful seedling recruitment in many flowering plants depends on seed dispersal services provided by large-bodied frugivores (Howe and Smallwood 1982), while virtually all seeds falling underneath the parent’s canopy succumb to density-dependent mortality—caused by fungal attack, other pathogens, and vertebrate and invertebrate seed predators (see review in Carson et al. 2008). A growing number of phytodemographic studies have examined the effects of large-vertebrate removal. Studies examining seedling recruitment under different levels of hunting pressure (or disperser abundance) reveal very different outcomes. At the community level, seedling density in overhunted forests can be indistinguishable, greater, or less than that in the undisturbed forests (Dirzo and Miranda 1991; Chapman and Onderdonk 1998; Wright et al. 2000), but the consequences of increased hunting pressure to plant regeneration depends on the patterns of depletion across different prey species. In persistently hunted Amazonian forests, where large-bodied primates are driven to local extinction or severely reduced in numbers (Peres and Palacios 2007), the probability of effective dispersal of largeseeded endozoochorous plants can decline by over 60% compared to non-hunted forests (Peres and Roosmalen 2003). Consequently, plant species with seeds dispersed by vulnerable game species are less abundant where hunters are active, whereas species with seeds dispersed by abiotic means or by small frugivores ignored by hunters are more abundant in the seedling and sapling layers (Nuñez-Iturri and Howe 2007; Wright et al. 2007; Terborgh et al. 2008). 

                However, the importance of dispersal- limitation in the absence of large frugivores depends on the degree to which their seed dispersal services are redundant to any given plant species (Peres and Roosmalen 2003). Furthermore, local extinction events in large-bodied species are rarely compensated by smaller species in terms of their population density, biomass, diet, and seed handling outcomes (Peres and Dolman 2000). Large vertebrates targeted by hunters often have a disproportionate impact on community structure and operate as “ecosystem engineers” (Jones et al. 1994; Wright and Jones 2006), either performing a key landscaping role in terms of structural habitat disturbance, or as mega-herbivores that maintain the structure and relative abundance of plant communities. For example, elephants exert a major role in modifying vegetation structure and composition as herbivores, seed dispersers, and agents of mortality for many small trees (Cristoffer and Peres 2003). Two similar forests with or without elephants show different succession and regeneration pathways, as shown by long-term studies in Uganda (Sheil and Salim 2004). Overharvesting of several other species holding a keystone landscaping role can lead to pervasive changes in the structure and function of ecosystems. For example, the decimation of North American beaver populations by pelt hunters following the arrival of Europeans profoundly altered the hydrology, channel geomorphology, biogeochemical pathways and community productivity of riparian habitats (Naiman et al. 1986). Mammal overhunting triggers at least two additional potential cascades: the secondary extirpation of dependent taxa and the subsequent decline of ecological processes mediated by associated species. For instance, overhunting can severely disrupt key ecosystem processes including nutrient recycling and secondary seed dispersal exerted by relatively intact assemblages of dung beetles (Coleoptera: Scarabaeinae) and other coprophagous invertebrates that depend on large mammals for adult and larval food resources (Nichols et al. 2009).

Wednesday, April 3, 2013

Tropical forest disturbance



                Timber extraction in tropical forests is widely variable in terms of species selectivity, but even highly selective logging can trigger major ecological changes in the understory light environment, forest microclimate, and dynamics of plant regeneration. Even reduced-impact logging (RIL) operations can generate enough forest disturbance, through elevated canopy gap fracture, to greatly augment forest understory desiccation, dry fuel loads, and fuel continuity, thereby breaching the forest flammability threshold in seasonally-dry forests. During severe dry seasons, often aggravated by increasingly frequent continental- scale climatic events, extensive ground fires initiated by either natural or anthropogenic sources of ignition can result in a dramatically reduced biomass and biodiversity value of previously unburnt tropical forests (Barlow and Peres 2004, 2008). Despite these undesirable effects, large-scale commercial logging that is unsustainable at either the population or ecosystem level continues unchecked in many tropical forest frontiers (Curran et al. 2004; Asner et al. 2005). Yet surface fires aggravated by logging disturbance represent one of the most powerful mechanisms of functional and compositional impoverishment of remaining areas of tropical forests (Cochrane 2003), and arguably the most important climatemediated phase shift in the structure of tropical ecosystems

Sunday, October 14, 2012

Overexploitation in aquatic ecosystems

              Marine biodiversity loss, largely through overfishing, is increasingly impairing the capacity of the world’s oceans to provide food, maintain water quality, and recover from perturbations (Worm et al. 2006). Yet marine fisheries provide employment and income for 0.2 billion people around the world, and fishing is the mainstay of the economy of many coastal regions; 41 million people worked as fishers or fish farmers in 2004, operating 1.3 million decked vessels and 2.7 million open boats (FAO 2007). An estimated 14 million metric tons of fuel was consumed by the fish-catching sector at a cost equivalent to US$22 billion, or ~25% of the total revenue of the sector. In 2004, reported catches from marine and inland capture fisheries were 85.8 million and 9.2 million tons, respectively, which was worth US$84.9 billion at first sale. Freshwater catches taken every year for food have declined recently but on average 500 000 tons are taken from the Mekong river in South-East Asia; 210 000 tons are taken from the Zaire river in Africa; and 210 000 tons of fish are taken from the Amazon river in South America. Seafood consumption is still high and rising in the First World and has doubled in China within the last decade. Fish contributes to, or exceeds 50% of the total animal protein consumption in many countries and regions, such as Bangladesh, Cambodia, Congo, Indonesia, Japan or the Brazilian Amazon. Overall, fish provides more than 2.8 billion people with ~20% or more of their average per capita intake of animal protein. 

             The oscillation of good and bad years in marine fisheries can also modulate the protein demand from terrestrial wildlife populations (Brashares et al. 2004). The share of fish in total world animal protein supply amounted to 16% in 2001 (FAO 2004). These ‘official’ landing statistics tend to severely underestimate catches and total values due to the enormous unrecorded contribution of subsistence fisheries consumed locally. Although the world’s oceans are vast, most seascapes are relatively low-productivity, and 80% of the global catch comes from only ~20% of the area. Approximately 68% of the world’s catch comes from the Pacific and northeast Atlantic. At current harvest rates, most of the economically important marine fisheries worldwide have either collapsed or are expected to collapse. Current impacts of overexploitation and its consequences are no longer locally nested, since 52% of marine stocks monitored by the FAO in 2005 were fully exploited at their maximum sustainable level and 24% were overexploited or depleted, such that their current biomass is much lower than the level that would maximize their sustained yield (FAO 2007). The remaining onequarter of the stocks were either underexploited or moderately exploited and could perhaps produce more. The Brazilian sardine (Sardinella brasiliensis) is a classic case of an overexploited marine fishery. In the 1970s hey-day of this industry, 200 000 tons were captured in southeast Brazil alone every year, but landings suddenly plummeted to <20 000 tons by 2001. Despite new fishing regulations introduced following its collapse, it is unclear whether southern Atlantic sardine stocks have shown any sign of recovery.

             With the possible exception of herring and related species that mature early in life and are fished with highly selective equipment, many gadids (e.g. cod, haddock) and other non-clupeids (e.g. flatfishes) have experienced little, if any, recovery in as much as 15 years after 45–99% reductions in reproductive biomass (Hutchings 2000). Worse still, an analysis of 147 populations of 39 wild fish species concluded that historically overexploited species, such as North Sea herring, became more prone to extreme year-on-year variation in numbers, rendering them vulnerable to economic or demographic extinction (Minto et al. 2008). Marine fisheries are an underperforming global asset—yields could be much greater if they were properly managed. The difference between the potential and actual net economic benefits from marine fisheries is in the order of US$50 billion per year—equivalent to over half thevalue of the global seafood trade (World Bank 2008). The cumulative economic loss to the global economy over the last three decades is estimated to be approximately US$2 trillion, and in many countries fishing operations are buoyed up by subsidies, so that the global fishery economy to the point of landing is already in deficit. Commercial fishing activities disproportionately threaten large-bodied marine and freshwater species (Olden et al. 2007). This results in fishermen fishing down the food chain, targeting ever-smaller pelagic fish as they can no longer capture top predatory fish. This is symptomatic of the now widely known process of ‘fishing down marine food webs’. Such sequential
size-graded exploitation systems also take place in multi-species assemblages hunted in tropical forests (Jerozolimski and Peres et al 2003). 

               In the seas, overexploitation threatens the persistence of ecologically significant populations of many large marine vertebrates, including sharks, tunas and sea turtles. Regional scale populations of large sharks worldwide have declined by 90% or more, and rapid declines of >75% of the coastal and oceanic Northwest Atlantic populations of scalloped hammerhead, white, and thresher sharks have occurred in the past 15 years (Baum et al. 2003; Myers and Worm 2003; Myers et al. 2007). Much of this activity is profligate and often driven by the surging global demand for shark fins. For example, in 1997 line fishermen captured 186 000 sharks in southern Brazil alone, of which 83% were killed and discarded in open waters following the removal of the most lucrative body parts (C.M. Vooren, pers. comm.). Of the large-bodied coastal species affected by this trade, several have virtually disappeared from shallow waters (e.g. greynurse sharks, Carcharias taurus). Official figures show that 131 tons of shark fins, corresponding to US $2.4 million, were exported from Brazil to Asia in 2007. Finally, we know rather little about ongoing extinction processes caused by harvesting. For example, from a compilation of 133 local, regional and global extinctions of marine fish populations, Dulvy et al. (2003) uncovered that exploitation was the main cause of extinctions (55% of all populations), but these were only reported after a median 53-year lag following their real-time disappearance. Some 80% of all extinctions were only discovered through historical comparisons; e.g. the near-extinction of large skates on both sides of the Atlantic was only brought to the world’s attention several decades after the declines have occurred.

Saturday, February 25, 2012

A brief history of exploitation

                Our rapacious appetite for both renewable and non - renewable resources has grown exponentially from our humble beginnings—when early humans exerted an ecological footprint no larger than that of other large omnivorous mammals— to currently one of the main driving forces in reorganizing the structure of many ecosystems. Humans have subsisted on wild plants and animals since the earliest primordial times, and most contemporary aboriginal societies remain primarily extractive in their daily quest for food, medicines, fiber and other biotic sources of raw materials to produce a wide range of utilitarian and ornamental artifacts. Modern hunter-gatherers and semi-subsistence farmers in tropical ecosystems, at varying stages of transition to an agricultural economy, still exploit a large number of plant and animal populations. By definition, exploited species extant today have been able to co-exist with some background level of exploitation. However, paleontological evidence suggests that prehistoric peoples have been driving prey populations to extinction long before the emergence of recorded history. 

                 The late Paleolithic archaeology of big-game hunters in several parts of the world shows the sequential collapse of their majestic lifestyle. Flint spearheads manufactured by western European Cro - Magnons became gradually smaller as they shifted down to ever smaller kills, ranging in size from mammoths to rabbits (Martin 1984). Human colonization into previously people-free islands and continents has often coincided with a rapid wave of extinction events resulting from the sudden arrival of novel consumers. Mass extinction events of large-bodied vertebrates in Europe, parts of Asia, North and South America, Madagascar, and several archipelagos have all been attributed to post-Pleistocene human overkill (Martin and Wright 1967; Steadman 1995; McKinney 1997; Alroy 2001). These are relatively well corroborated in the (sub)fossil record but many more obscure target species extirpated by archaic hunters will remain undetected. In more recent times, exploitation-induced extinction events have also been common as European settlers wielding superior technology greatly expanded their territorial frontiers and introduced market and sport hunting. One example is the decimation of the vast North American buffalo (bison; Bison bison) herds. In the 1850s, tens of millions of these ungulates roamed the Great Plains in herds exceeding those ever known for any other mega herbivore, but by the century’s close, the bison was all but extinct. 

                 Another example is the extirpation of mono dominant stands of Pau-Brasil legume trees (Caesalpinia echinata, Leguminosae- Mimosoidae) from eastern Brazil, a source of red dye and hardwood that gave Brazil its name. These were once extremely abundant and formed dense clusters along 3000 km of coastal Atlantic forest. This species sustained the first trade cycle between the new Portuguese colony and European markets and was relentlessly exploited from 1500 to 1875 when it finally became economically extinct (Dean 1996). Today, specimens of Pau-Brasil trees are largely confined to herbaria, arboreta and a few private collections. The aftershock of modern human arrival is still being felt in many previously inaccessible tropical forest frontiers, such as those in parts of Amazonia, where greater numbers of hunters wielding fire arms are emptying vast areas of its harvest sensitive mega fauna (Peres and Lake 2003). In many modern societies, the exploitative value of wildlife populations for either subsistence or commercial purposes has been gradually replaced by recreational values including both consumptive and non-consumptive uses. In 1990, over 20 million hunters in the United States spent over half a billion days afield in pursuit of wild game, and hunting licenses finance vast conservation areas in North America. 

                In 2006, ~ 87.5 million US residents spent ~US$122.3 billion in wildlife-related recreational activities, including ~US$76.6 billion spent on fishing and/or hunting by 33.9 million people (US Census Bureau 2006). Some 10% of this total is spent hunting white-tailed deer alone (Conover 1997). Consumptive uses of wildlife habitat are therefore instrumental in either financing or justifying much of the conservation acreage available in the 21st century from game reserves in Africa, Australia and North America to extractive reserves in Amazonia, to the reindeer rangelands of Scandinavia and the saiga steppes of Mongolia. Strong cultural or social factors regulating resource choice often affect which species are taken. For example, while people prefer to hunt large bodied mammals in tropical forests, feeding taboos and restrictions can switch “on or off” depending on levels of game depletion (Ross 1978) as predicted by foraging theory. This is consistent with the process of de-tabooing speciesthat were once tabooed, as the case of brocket deer among the Siona-Secoya (Hames and Vickers 1982). However, several studies suggest that cultural factors breakdown and play a lesser role when large-bodied game species become scarce, thereby forcing discriminate harvesters to become less selective (Jerozolimski and Peres 2003).

Friday, February 10, 2012

Overexploitation

                In an increasingly human-dominated world, where most of us seem oblivious to the liquidation of Earth’s natural resource capital, exploitation of biological populations has become one of the most important threats to the persistence of global biodiversity. Many regional economies, if not entire civilizations, have been built on free-for-all extractive industries, and history is littered with examples of boom - and - bust economic cycles following the emergence, escalation and rapid collapse of unsustainable industries fuelled by raw renewable resources. The economies of many modern nation -states still depend heavily on primary extractive industries, such as fisheries and logging, and this includes countries spanning nearly the entire spectrum of per capita Gross National Product (GNP), such as Iceland and Cameroon. Human exploitation of biological commodities involves resource extraction from the land, freshwater bodies or oceans, so that wild animals, plants or their products are used for a wide variety of purposes ranging from food to fuel, shelter, fiber, construction materials, household and garden
items, pets, medicines, and cosmetics. 

               Overexploitation occurs when the harvest rate of any given population exceeds its natural replacement rate, either through reproduction alone in closed populations or through both reproduction and immigration from other populations. Many species are relatively insensitive to harvesting, remaining abundant under relatively high rates of offtake, whereas others can be driven to local extinction by even the lightest levels of offtake. Fishing, hunting, grazing, and logging are classic consumer-resource interactions and in natural systems such interactions tend to come into equilibrium with the intrinsic productivity of a given habitat and the rates at which resources are harvested. Furthermore, efficiency of exploitation by consumers and the highly variable intrinsic resilience to exploitation by resource populations may have often evolved over long periods. Central to these differences are species traits such as the population density (or stock size), the per capita growth rate of the population, spatial diffusion from other less harvested populations, and the direction and degree to which this growth responds to harvesting through either positive or negative density dependence. 

               For example, many long-lived and slow -growing organisms are particularly vulnerable to the additive mortality resulting from even the lightest offtake, especially if these traits are combined with low dispersal rates that can inhibit population diffusion from adjacent unharvested source areas, should these be available. These species are often threatened by over hunting in many terrestrial ecosystems, unsustainable logging in tropical forest regions, cactus “rustling” in deserts, overfishing in marine and freshwater ecosystems, or many other forms of unsustainable extraction. For example, overhunting is the most serious threat to large vertebrates in tropical forests (Cunningham et al. 2009), and overexploitation, accidental mortality and persecution caused by humans threatens approximately one-fifth (19%) of all tropical forest vertebrate species for which the cause of decline has been documented [IUCN (International Union for Conservation of Nature) 2007]. Overexploitation is the most important cause of freshwater turtle extinctions (IUCN 2007) and the third-most important for freshwater fish extinctions, behind the effects of habitat loss and introduced species (Harrison and Stiassny 1999). 

               Thus, while population declines driven by habitatloss and degradation quite rightly receive a great deal of attention from conservation biologists (MEA 2006), we must also contend with the specter of the ‘empty’ or ‘half-empty’ forests, savannahs, wetlands, rivers, and seas, even if the physical habitat structure of a given ecosystem remains otherwise unaltered by other anthropogenic processes that degrade habitat quality. Overexploitation also threatens frogs: with Indonesia the main exporter of frog legs for markets in France and the US (Warkentin et al. 2009). Up to one billion wild frogs are estimated to be harvested every year for human consumption (Warkentin et al. 2009). I begin this chapter with a consideration of why people exploit natural populations, including the historical impacts of exploitation on wild plants and animals. This is followed by a review of effects of exploitation in terrestrial and aquatic biomes. Throughout the chapter, I focus on tropical forests and marine ecosystems because many plant and animal species in these realms have succumbed to some of the most severe and least understood overexploitation-related threats to population viability of contemporary times. I then explore impacts of exploitation on both target and non-target species, as well as cascading effects on the ecosystem. This leads to a reflection at the end of this chapter of resource management considerations in the real-world, and the clashes of culture between those concerned with either the theoretical underpinnings or effective policy solutions addressing the predicament of species imperiled by overexploitation.

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More