Henry David Thoreau

Thank God men cannot fly, and lay waste the sky as well as the earth.

Mohandas K. Gandhi

There is a sufficiency in the world for man's need but not for man's greed.

Robert Orben

There's so much pollution in the air now that if it weren't for our lungs there'd be no place to put it all.

Alan M. Eddison

Modern technology,Owes ecology,An apology.

Henrik Tikkanen

Because we don't think about future generations, they will never forget us.

Saturday, June 1, 2013

Hunting and plant community dynamics



        Although the direct impacts of defaunation driven by overhunting can be predicted to some degree, higher-order indirect effects on community structure remain poorly understood since Redford’s (1992) seminal paper and may have profound, long-term consequences for the persistence of other taxa, and the structure, productivity and resilience of terrestrial ecosystems (Cunningham et al. 2009). Severe population declines or extirpation of the world’s megafauna may result in dramatic changes to ecosystems, some of which have already been empirically demonstrated, while others have yet to be documented or remain inexact. Large vertebrates often have a profound impact on food webs and community dynamics through mobile-linkage mutualisms, seed predation, and seedling and sapling herbivory. Plant communities in tropical forests depleted of their megafauna may experience pollinationbottlenecks, reduced seed dispersal, monodominance of seedling cohorts, altered patterns of seedling recruitment, other shifts in the relative abundance of species, and various forms of functional compensation (Cordeiro and Howe 2003; Peres and Roosmalen 2003; Wang et al. 2007; Terborgh et al. 2008; Chapter 3). On the other hand, the net effects of large mammal defaunation depends on how the balance of interactions are affected by population declines in both mutualists (e.g. highquality seed dispersers) and herbivores (e.g. seed predators) (Wright 2003). For example, significant changes in population densities in wild pigs (Suidae) and several other ungulates and rodents, which are active seed predators, may have a major effect on seed and seedling survival and forest regeneration (Curran and Webb 2000). 

               Tropical forest floras are most dependent on large-vertebrate dispersers, with as many as 97% of all tree, woody liana and epiphyte species bearing fruits and seeds that are morphologically adapted to endozoochorous (passing through the gut of an animal) dispersal (Peres and Roosmalen 2003). Successful seedling recruitment in many flowering plants depends on seed dispersal services provided by large-bodied frugivores (Howe and Smallwood 1982), while virtually all seeds falling underneath the parent’s canopy succumb to density-dependent mortality—caused by fungal attack, other pathogens, and vertebrate and invertebrate seed predators (see review in Carson et al. 2008). A growing number of phytodemographic studies have examined the effects of large-vertebrate removal. Studies examining seedling recruitment under different levels of hunting pressure (or disperser abundance) reveal very different outcomes. At the community level, seedling density in overhunted forests can be indistinguishable, greater, or less than that in the undisturbed forests (Dirzo and Miranda 1991; Chapman and Onderdonk 1998; Wright et al. 2000), but the consequences of increased hunting pressure to plant regeneration depends on the patterns of depletion across different prey species. In persistently hunted Amazonian forests, where large-bodied primates are driven to local extinction or severely reduced in numbers (Peres and Palacios 2007), the probability of effective dispersal of largeseeded endozoochorous plants can decline by over 60% compared to non-hunted forests (Peres and Roosmalen 2003). Consequently, plant species with seeds dispersed by vulnerable game species are less abundant where hunters are active, whereas species with seeds dispersed by abiotic means or by small frugivores ignored by hunters are more abundant in the seedling and sapling layers (Nuñez-Iturri and Howe 2007; Wright et al. 2007; Terborgh et al. 2008). 

                However, the importance of dispersal- limitation in the absence of large frugivores depends on the degree to which their seed dispersal services are redundant to any given plant species (Peres and Roosmalen 2003). Furthermore, local extinction events in large-bodied species are rarely compensated by smaller species in terms of their population density, biomass, diet, and seed handling outcomes (Peres and Dolman 2000). Large vertebrates targeted by hunters often have a disproportionate impact on community structure and operate as “ecosystem engineers” (Jones et al. 1994; Wright and Jones 2006), either performing a key landscaping role in terms of structural habitat disturbance, or as mega-herbivores that maintain the structure and relative abundance of plant communities. For example, elephants exert a major role in modifying vegetation structure and composition as herbivores, seed dispersers, and agents of mortality for many small trees (Cristoffer and Peres 2003). Two similar forests with or without elephants show different succession and regeneration pathways, as shown by long-term studies in Uganda (Sheil and Salim 2004). Overharvesting of several other species holding a keystone landscaping role can lead to pervasive changes in the structure and function of ecosystems. For example, the decimation of North American beaver populations by pelt hunters following the arrival of Europeans profoundly altered the hydrology, channel geomorphology, biogeochemical pathways and community productivity of riparian habitats (Naiman et al. 1986). Mammal overhunting triggers at least two additional potential cascades: the secondary extirpation of dependent taxa and the subsequent decline of ecological processes mediated by associated species. For instance, overhunting can severely disrupt key ecosystem processes including nutrient recycling and secondary seed dispersal exerted by relatively intact assemblages of dung beetles (Coleoptera: Scarabaeinae) and other coprophagous invertebrates that depend on large mammals for adult and larval food resources (Nichols et al. 2009).

Wednesday, April 3, 2013

Tropical forest disturbance



                Timber extraction in tropical forests is widely variable in terms of species selectivity, but even highly selective logging can trigger major ecological changes in the understory light environment, forest microclimate, and dynamics of plant regeneration. Even reduced-impact logging (RIL) operations can generate enough forest disturbance, through elevated canopy gap fracture, to greatly augment forest understory desiccation, dry fuel loads, and fuel continuity, thereby breaching the forest flammability threshold in seasonally-dry forests. During severe dry seasons, often aggravated by increasingly frequent continental- scale climatic events, extensive ground fires initiated by either natural or anthropogenic sources of ignition can result in a dramatically reduced biomass and biodiversity value of previously unburnt tropical forests (Barlow and Peres 2004, 2008). Despite these undesirable effects, large-scale commercial logging that is unsustainable at either the population or ecosystem level continues unchecked in many tropical forest frontiers (Curran et al. 2004; Asner et al. 2005). Yet surface fires aggravated by logging disturbance represent one of the most powerful mechanisms of functional and compositional impoverishment of remaining areas of tropical forests (Cochrane 2003), and arguably the most important climatemediated phase shift in the structure of tropical ecosystems

Thursday, December 13, 2012

Cascading effects of overexploitation on ecosystems

         
              All extractive systems in which the over harvested resource is one or more biological populations, can lead to pervasive trophic cascades and other unintended ecosystem-level consequences to non-target species. Most hunting, fishing, and collecting activities affect not only the primary target species, but also species that are taken accidentally or opportunistically. Furthermore, exploitation often causes physical damage to the environment, and has ramifications for other species through cascading interactions and changes in food webs. In addition, overexploitation may severely erode the ecological role of resource populations in natural communities. In other words, overexploited populations need not be entirely extirpated before they become ecologically extinct. In communities that are “half-empty” (Redford and Feinsinger 2001), populations may be reduced to sufficiently low numbers so that, although still present in the community, they no longer interact significantly with other species (Estes et al. 1989). Communities with reduced levels of species interactions may become pale shadows of their former selves. 

              Although difficult to measure, severe declines in large vertebrate populations may result in multi-trophic cascades that may profoundly alter the structure of marine ecosystems such as kelp forests, coral reefs and estuaries (Jackson et al. 2001), and analogous processes may occur in many terrestrial ecosystems. Plant reproduction in endemic island floras can be severely affected by population declines in flying foxes (pteropodid fruit bats) that serve as strong mutualists as pollinators and seed dispersers (Cox et al. 1991). In some Pacific archipelagos, several species may become functionally extinct, ceasing to effectively disperse large seeds long before becoming rare (McConkey and Drake 2006). A key agenda for future research will involve understanding the non-linearities between functional responses to the numeric abundance of strong interactors reduced by exploitation pressure and the quality of ecological services that depleted populations can perform. For example, what is the critical density of any given exploited population below which it can no longer fulfill its community-wide ecological role? 

                 In this section I concentrate on poorly known interaction cascades in tropical forest and marine environments, and discuss a few examples of how apparently innocuous extractive activities targeted to one or a few species can drastically affect the structure and functioning of these terrestrial and aquatic ecosystems.

Sunday, October 14, 2012

Overexploitation in aquatic ecosystems

              Marine biodiversity loss, largely through overfishing, is increasingly impairing the capacity of the world’s oceans to provide food, maintain water quality, and recover from perturbations (Worm et al. 2006). Yet marine fisheries provide employment and income for 0.2 billion people around the world, and fishing is the mainstay of the economy of many coastal regions; 41 million people worked as fishers or fish farmers in 2004, operating 1.3 million decked vessels and 2.7 million open boats (FAO 2007). An estimated 14 million metric tons of fuel was consumed by the fish-catching sector at a cost equivalent to US$22 billion, or ~25% of the total revenue of the sector. In 2004, reported catches from marine and inland capture fisheries were 85.8 million and 9.2 million tons, respectively, which was worth US$84.9 billion at first sale. Freshwater catches taken every year for food have declined recently but on average 500 000 tons are taken from the Mekong river in South-East Asia; 210 000 tons are taken from the Zaire river in Africa; and 210 000 tons of fish are taken from the Amazon river in South America. Seafood consumption is still high and rising in the First World and has doubled in China within the last decade. Fish contributes to, or exceeds 50% of the total animal protein consumption in many countries and regions, such as Bangladesh, Cambodia, Congo, Indonesia, Japan or the Brazilian Amazon. Overall, fish provides more than 2.8 billion people with ~20% or more of their average per capita intake of animal protein. 

             The oscillation of good and bad years in marine fisheries can also modulate the protein demand from terrestrial wildlife populations (Brashares et al. 2004). The share of fish in total world animal protein supply amounted to 16% in 2001 (FAO 2004). These ‘official’ landing statistics tend to severely underestimate catches and total values due to the enormous unrecorded contribution of subsistence fisheries consumed locally. Although the world’s oceans are vast, most seascapes are relatively low-productivity, and 80% of the global catch comes from only ~20% of the area. Approximately 68% of the world’s catch comes from the Pacific and northeast Atlantic. At current harvest rates, most of the economically important marine fisheries worldwide have either collapsed or are expected to collapse. Current impacts of overexploitation and its consequences are no longer locally nested, since 52% of marine stocks monitored by the FAO in 2005 were fully exploited at their maximum sustainable level and 24% were overexploited or depleted, such that their current biomass is much lower than the level that would maximize their sustained yield (FAO 2007). The remaining onequarter of the stocks were either underexploited or moderately exploited and could perhaps produce more. The Brazilian sardine (Sardinella brasiliensis) is a classic case of an overexploited marine fishery. In the 1970s hey-day of this industry, 200 000 tons were captured in southeast Brazil alone every year, but landings suddenly plummeted to <20 000 tons by 2001. Despite new fishing regulations introduced following its collapse, it is unclear whether southern Atlantic sardine stocks have shown any sign of recovery.

             With the possible exception of herring and related species that mature early in life and are fished with highly selective equipment, many gadids (e.g. cod, haddock) and other non-clupeids (e.g. flatfishes) have experienced little, if any, recovery in as much as 15 years after 45–99% reductions in reproductive biomass (Hutchings 2000). Worse still, an analysis of 147 populations of 39 wild fish species concluded that historically overexploited species, such as North Sea herring, became more prone to extreme year-on-year variation in numbers, rendering them vulnerable to economic or demographic extinction (Minto et al. 2008). Marine fisheries are an underperforming global asset—yields could be much greater if they were properly managed. The difference between the potential and actual net economic benefits from marine fisheries is in the order of US$50 billion per year—equivalent to over half thevalue of the global seafood trade (World Bank 2008). The cumulative economic loss to the global economy over the last three decades is estimated to be approximately US$2 trillion, and in many countries fishing operations are buoyed up by subsidies, so that the global fishery economy to the point of landing is already in deficit. Commercial fishing activities disproportionately threaten large-bodied marine and freshwater species (Olden et al. 2007). This results in fishermen fishing down the food chain, targeting ever-smaller pelagic fish as they can no longer capture top predatory fish. This is symptomatic of the now widely known process of ‘fishing down marine food webs’. Such sequential
size-graded exploitation systems also take place in multi-species assemblages hunted in tropical forests (Jerozolimski and Peres et al 2003). 

               In the seas, overexploitation threatens the persistence of ecologically significant populations of many large marine vertebrates, including sharks, tunas and sea turtles. Regional scale populations of large sharks worldwide have declined by 90% or more, and rapid declines of >75% of the coastal and oceanic Northwest Atlantic populations of scalloped hammerhead, white, and thresher sharks have occurred in the past 15 years (Baum et al. 2003; Myers and Worm 2003; Myers et al. 2007). Much of this activity is profligate and often driven by the surging global demand for shark fins. For example, in 1997 line fishermen captured 186 000 sharks in southern Brazil alone, of which 83% were killed and discarded in open waters following the removal of the most lucrative body parts (C.M. Vooren, pers. comm.). Of the large-bodied coastal species affected by this trade, several have virtually disappeared from shallow waters (e.g. greynurse sharks, Carcharias taurus). Official figures show that 131 tons of shark fins, corresponding to US $2.4 million, were exported from Brazil to Asia in 2007. Finally, we know rather little about ongoing extinction processes caused by harvesting. For example, from a compilation of 133 local, regional and global extinctions of marine fish populations, Dulvy et al. (2003) uncovered that exploitation was the main cause of extinctions (55% of all populations), but these were only reported after a median 53-year lag following their real-time disappearance. Some 80% of all extinctions were only discovered through historical comparisons; e.g. the near-extinction of large skates on both sides of the Atlantic was only brought to the world’s attention several decades after the declines have occurred.

Tuesday, September 18, 2012

Non-timber forest products

              Non-timber forest products (NTFPs) are biological resources other than timber which are extracted from either natural or managed forests (Peters 1994). Examples of exploited plant products include fruits, nuts, oil seeds, latex, resins, gums, medicinal plants, spices, dyes, ornamental plants, and raw materials such as firewood, Desmoncus climbing palms, bamboo and rattan. The socio-economic importance of NTFP harvest to indigenous peoples cannot be underestimated. Many ethnobotanical studies have catalogued the wide variety of useful plants (or plant parts) harvested by different aboriginal groups throughout the tropics. For example, the Waimiri-Atroari Indians of central Amazonia make use of 79% of the tree species occurring in a single 1 ha terra firme forest plot (Milliken et al. 1992), and 1748 of the ~8000 angiosperm species in the Himalayan region spanning eight Asian countries are used medicinally and many more for other purposes (Samant et al. 1998). Exploitation of NTFPs often involves partial or entire removal of individuals from the population, but the extraction method and whether vital parts are removed usually determine the mortality level in the exploited population. Traditional NTFP extractive practices are often hailed as desirable, low-impact economic activities in tropical forests compared to alternative forms of land use involving structural disturbance such as selective logging and shifting agriculture (Peters et al. 1989). As such, NTFP exploitation is usually assumed to be sustainable and a promising compromise between biodiversity conservation and economic development under varying degrees of market integration. The implicit assumption is that traditional methods of NTFP exploitation have little or no impact on forest ecosystems and tend to be sustainable because they have been practiced over many generations. However, virtually any form of NTFP exploitation in tropical forests has an ecological impact.

             The spatial extent and magnitude of this impact dependson the accessibility of the resource stock, the floristic composition of the forest, the nature and intensity of harvesting, and the particular species or plant part under exploitation. Yet few studies have quantitatively assessed the demographic viability of plant populations sourcing NTFPs. One exception are Brazil nuts (Bertholletia excelsa, Lecythidaceae) which comprise the most important wild seed extractive industry supporting millions of Amazonian forest dwellers for either subsistence or income. This wild seed crop is firmly established in export markets, has a history of 200 years of commercial exploitation, and comprises one of the most valuable non-timber extractive industries in tropical forests anywhere. Yet the persistent collection of B. excelsa seeds has severely undermined the patterns of seedling recruitment of Brazil nut trees. This has drastically affected the age structure of many natural populations to the point where persistently overexploited stands have succumbed to a process of senescence and demographic collapse, threatening this cornerston of the Amazonian extractive economy (Peres et al. 2003). A boom in the use of homeopathic remedies sustained by over collecting therapeutic and aromatic plants is threatening at least 150 species of European wild flowers and plants and driving many populations to extinction (Traffic 1998). Commercial exploitation of the Pau-Rosa or rosewood tree (Aniba rosaeodora, Lauraceae), which contains linalol, a key ingredient in luxury perfumes, involves a one-off destructive harvesting technique that almost invariably kills the tree. This species has consequently been extirpated from virtually its entire range in Brazilian Amazonia (Mitja and Lescure 2000). Channel 5 and other perfumes made with Pau-Rosa fragrance gained wide market demand decades ago, but
the number of processing plants in Brazil fell from 103 in 1966 to fewer than 20 in 1986, due to the dwindling resource base. Yet French perfume connoisseurs have been reluctant to accept replacing the natural Pau-Rosa fragrance with
synthetic substitutes, and the last remaining populations of Pau-Rosa remain threatened. 


              The same could be argued for a number of NTFPs for which the harvest by destructive practices involves a lethal injury to whole reproductive individuals. What then is the impact of NTFP extraction on the dynamics of natural populations? How does the impact vary with the life history of plants and animals harvested? Are current extraction rates truly sustainable? These are key questions in terms of the demographic sustainability of different NTFP offtakes, which will ultimately depend on the ability of the resource population to recruit new seedlings either continuously or in sporadic pulses while being subjected to a repeated history of exploitation. Unguarded enthusiasm for the role of NTFP exploitation in rural development partly stems from unrealistic economic studies reporting high market values. For example, Peters et al. (1989) reported that the net-value of fruit and latex extraction in the Peruvian Amazon was US$6330/ ha. This is in sharp contrast with a Mesoamerican study that quantified the local value of foods, construction materials, and medicines extracted from the forest by 32 indigenous Indian households (Godoy et al. 2000). The combined value of consumption and sale of forest goods ranged from US$18 to US$24 ha 1 yr 1, at the lower end of previous estimates (US$49 - US$1 089 ha 1 yr 1). NTFP extraction thus cannot be seen as a panacea for rural development and in many studies the potential value of NTFPs is exaggerated by unrealistic assumptions of high discount rates, unlimited market demands, availability of transportation facilities and absence of product substitution.

Sunday, September 2, 2012

Tropical forest vertebrates

             Humans have been hunting wildlife in tropical forests for over 100 000 years, but the extent of consumption has greatly increased over the last few decades. Tropical forest species are hunted for local consumption or sales in distant markets as food, trophies, medicines and pets. Exploitation of wild meat by forest dwellers has increased due to changes in hunting technology, scarcity of alternative protein, larger numbers of consumers, and greater access infrastructure. Recent estimates of the annual wild meat harvest are 23 500 tons in Sarawak (Bennett 2002), up to 164 692 tons in the Brazilian Amazon (Peres 2000), and up to 3.4 million tons in Central Africa (Fa and Peres 2001).
Hunting rates are already unsustainably high across vast tracts of tropical forests, averaging sixfold the maximum sustainable harvest in Central Africa (Fa et al. 2001). Consumption is both by rural and urban communities, who are often at the end of long supply chains that extend into many remote areas (Milner-Gulland et al. 2003). 


               The rapid acceleration in tropical forest defaunation due to unsustainable hunting initially occurred in Asia (Corlett 2007), is now sweeping through Africa, and is likely to move into the remotest parts of the neotropics (Peres and Lake 2003), reflecting human demographics in different continents. Hunting for either subsistence or commerce can profoundly affect the structure of tropical forest vertebrate assemblages, as revealed by both village- based kill-profiles (Jerozolimski and Peres 2003; Fa et al. 2005) and wildlife surveys in hunted and unhunted forests. This can be seen in the residual game abundance at forest sites subjected to varying degrees of hunting pressure, where overhunting often results in faunal biomass collapses, mainly through declines and local extinctions of large-bodied species (Bodmer 1995; Peres 2000). Peres and Palacios (2007) provide the first systematic estimates of the impact of hunting on the abundances of a comprehensive set of 30 reptile, bird, and mammal species across 101 forest sites scattered widely throughout the Amazon Basin and Guianan Shield. Considering the 12 most harvest sensitive species, mean aggregate population biomass was reduced almost eleven-fold from 979.8 kg/km2 in unhunted sites to only 89.2 kg/km2 in heavily hunted sites. 

              In KilumIjim, Cameroon, most large mammals, including elephants, buffalo, bushbuck, chimpanzees, leopards, and lions, have been lost as a result of hunting (Maisels et al. 2001). In Vietnam, 12 large vertebrate species have become virtually extinct over the last five decades primarily due to hunting (Bennett and Rao 2002). Pangolins and several other forest vertebrate species are facing regionalscale extinction throughout their range across southern Asia [Corlett 2007, TRAFFIC (The Wildlife Trade Monitoring Network) 2008], largely as a result of trade, and over half of all Asian freshwater turtle species are considered Endangered due to over-harvesting (IUCN 2007). In sum, game harvest studies throughout the tropics have shown that most unregulated, commercial hunting for wild meat is unsustainable (Robinson and Bennett 2000; Nasi et al. 2008), and that even subsistence hunting driven by local demand can severely threaten many medium to large-bodied vertebrate populations, with potentially far-reaching consequences to other species. However, persistent harvesting of multi-species prey assemblages can often lead to post-depletion equilibrium conditions in which slow-breeding, vulnerable taxa are eliminated and gradually replaced by fast-breeding robust taxa that are resilient to typical offtakes. For example, hunting in West African forests could now be defined as sustainable from the viewpoint of
urban bushmeat markets in which primarily rodents and small antelopes are currently traded, following a series of historical extinctions of vulnerable prey such as primates and large ungulates (Cowlishaw et al. 2005).

Sunday, August 12, 2012

Overexploitation in tropical forests

             Tropical deforestation is driven primarily by frontier expansion of subsistence agriculture and large development programs involving resettlement, agriculture, and infrastructure. However, animal and plant population declines are typically pre-empted by hunting and logging activity well before the coup de grĂ¢ce of deforestation is delivered. It is estimated that between 5 and 7 million hectares of tropical forests are logged annually, approximately 68-79% of the area that was completely deforested each year between 1990 and 2005 [FAO (Food and Agriculture Organization of the United Nations) 2007]. Tropical forests account for ~25% of the global industrial wood production worth US$400 billion or ~2% of the global gross domestic product [WCFSD (World Commission on Forests and Sustainable Development) 1998]. Much of this logging activity opens up new frontiers to wildlife and non-timber resource exploitation, and catalyses the transition into a landscape dominated by slash-and burn and large-scale agriculture. Few studies have examined the impacts of selective logging on commercially valuable timber species and comparisons among studies are limited because they often fail to employ comparable methods that are adequately reported. The best case studies come from the most valuable timber species that have already declined in much of their natural ranges.

            For instance, the highly selective, but low intensity logging of broadleaf mahogany (Swietenia macrophylla), the most valuable widely traded Neotropical timber tree, is driven by the extraordinarily high prices in international markets, which makes it lucrative for loggers to open-up even remote wilderness areas at high transportation costs. Mechanized extraction of mahogany and other prime timber species impacts the forest by creating canopy gaps and imparting much collateral damage due to logging roads and skid trails (Grogan et al. 2008). Mahogany and other high-value tropical timber species worldwide share several traits that predispose them to commercial extirpation: excellent pliable wood of exceptional beauty; natural distributions in forests experiencing rapid conversion rates; low-density populations (often <1 tree/ha); and life histories generally characterized as non-pioneer late secondary, with fast growth rates, abiotic seed dispersal, and low-density seedlings requiring canopy disturbance for optimal seedling regeneration in the understory (Swaine and Whitmore 1988; Sodhi et al. 2008). One of the major obstacles to implementing a sustainable forestry sector in tropical countries is the lack of financial incentives for producers to limit offtakes to sustainable levels and invest in regeneration. Economic logic often dictates that trees should be felled whenever their rate of volume
increment drops below the prevailing interest rate (Pearce 1990). Postponing harvest beyond this point would incur an opportunity cost because profits from logging could be invested at a higher rate elsewhere.

            This partly explains why many slow-growing timber species from tropical forests and savannahs are harvested unsustainably (e.g. East African Blackwood (Dalbergia melanoxylon) in the Miombo woodlands of Tanzania; Ball 2004). This is particularly the case where land tenure systems are unstable, and where there are no disincentives against ‘hit-and-run’ operations that mine the resource capital at one site and move on to undepleted areas elsewhere. This is clearly shown in a mahogany study in Bolivia where the smallest trees felled are ~40 cm in diameter, well below the legal minimum size (Gullison 1998). At this size, trees are increasing in volume at about 4% per year, whereas real mahogany price increases have averaged at only 1%, so that a 40-cm mahogany tree increases in value at about 5% annually, slowing down as the tree becomes larger. In contrast, real interest rates in Bolivia and other tropical countries are often >10%, creating a strong economic incentive to liquidate all trees of any value regardless of resource ownership. Tropical deforestation is driven primarily by frontier expansion of subsistence agriculture and large development programs involving resettlement, agriculture, and infrastructure. However, animal and plant population declines are typically pre-empted by hunting and logging activity well before the coup de grĂ¢ce of deforestation is delivered.

            It is estimated that between 5 and 7 million hectares of tropical forests are logged annually, approximately 68-79% of the area that was completely deforested each year between 1990 and 2005 [FAO (Food and Agriculture Organization of the United Nations) 2007]. Tropical forests account for ~25% of the global industrial wood production worth US$400 billion or ~2% of the global gross domestic product [WCFSD (World Commission on Forests and Sustainable Development) 1998]. Much of this logging activity opens up new frontiers to wildlife and non-timber resource exploitation, and catalyses the transition into a landscape dominated by slash-andburn and large-scale agriculture. Few studies have examined the impacts of selective logging on commercially valuable timber species and comparisons among studies are limited because they often fail to employ comparable methods that are adequately reported. The best case studies come from the most valuable timber species that have already declined in much of their natural ranges. For instance, the highly selective, but low intensity logging of broadleaf mahogany (Swietenia macrophylla), the most valuable widely traded Neotropical timber tree, is driven by the extraordinarily high prices in international markets, which makes it lucrative for loggers to open-up even remote wilderness areas at high transportation costs. Mechanized extraction of mahogany and other prime timber species impacts the forest by creating canopy gaps and imparting much collateral damage due to logging roads and skid trails (Grogan et al.
2008). Mahogany and other high-value tropical timber species worldwide share several traits that predispose them to commercial extirpation: excellent pliable wood of exceptional beauty; natural distributions in forests experiencing rapid conversion rates; low-density populations
(often <1 tree/ha); and life histories generally characterized as non-pioneer late secondary, with fast growth rates, abiotic seed dispersal, and low-density seedlings requiring canopy disturbance for optimal seedling regeneration in the understory (Swaine and Whitmore 1988; Sodhi et al. 2008). One of the major obstacles to implementing a sustainable forestry sector in tropical countries is the lack of financial incentives for producers to limit offtakes to sustainable levels and invest in regeneration.

             Economic logic often dictates that trees should be felled whenever their rate of volume increment drops below the prevailing interest rate (Pearce 1990). Postponing harvest beyond this point would incur an opportunity cost because profits from logging could be invested at a higher rate elsewhere. This partly explains why many slow-growing timber species from tropical forests and savannahs are harvested unsustainably (e.g. East African Blackwood (Dalbergia melanoxylon) in the Miombo woodlands of Tanzania; Ball 2004). This is particularly the case where land tenure systems are unstable, and where there are no disincentives against ‘hit-and-run’ operations that mine the resource capital at one site and move on to undepleted areas elsewhere. This is clearly shown in a mahogany study in Bolivia where the smallest trees felled are ~40 cm in diameter, well below the legal minimum size (Gullison 1998). At this size, trees are increasing in volume at about 4% per year, whereas real mahogany price increases have averaged at only 1%, so that a 40-cm mahogany tree increases in value at about 5% annually, slowing down as the tree becomes larger. In contrast, real interest rates in Bolivia and other tropical countries are often >10%, creating a strong economic incentive to liquidate all trees of any value regardless of resource ownership.

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More