Tuesday, November 1, 2011

Where is biodiversity?

                Just as biodiversity has varied markedly through time, so it also varies across space. Indeed, one can think of it as forming a richly textured land and seascape, with peaks (hotspots) and troughs (cold spots), and extensive plains in between. Even locally, and just for particular groups, the numbers of species can be impressive, with for example c.900 species of fungal fruiting bodies recorded from 13 plots totaling just 14.7 ha (hectare) near Vienna, Austria (Straatsma and Krisai- Greilhuber 2003), 173 species of lichens on a single tree in Papua New Guinea (Aptroot 1997), 814 species of trees from a 50 ha study plot in Peninsular Malaysia (Manokaran et al. 1992), 850 species of invertebrates estimated to occur at a sandy beach site in the North Sea (Armonies and Reise 2000), 245 resident species of birds recorded holding territories on a 97 ha plot in Peru (Terborgh et al. 1990), and >200 species of mammals occurring at some sites in the Amazonian rain forest (Voss and Emmons 1996). 

                 Although it remains the case that for no even moderately sized area do we have a comprehensive inventory of all of the species that are present (microorganisms typically remain insufficiently documented even in otherwise well studied areas), knowledge of the basic patterns has been developing rapidly. Although long constrained to data on higher vertebrates, the breadth of organisms for which information is available has been growing, with much recent work particularly attempting to determine whether microorganisms show the same geographic patterns as do other groups.

Land and water

                 The oceans cover 340.1 million km2 (67%), the land 170.3 million km2 (33%), and fresh waters (lakes and rivers) 1.5 million km2 (0.3%; with another 16 million km2 under ice and permanent snow, and 2.6 million km2 as wetlands, soil water and permafrost) of the Earth’s surface. It would therefore seem reasonable to predict that the oceans would be most biodiverse, followed by the land and then freshwaters. In terms of numbers of higher taxa, there is indeed some evidence that marine systems are especially diverse. For example, of the 96 phyla recognized by Margulis and Schwartz (1998), about 69 have marine representatives, 55 have terrestrial ones, and 60 have freshwater representatives. However, of the species described to date only about 15% are marine and 6% are freshwater. The fact that life began in the sea seems likely to have played an important role in explaining why there are larger numbers of higher taxa in marine systems than in terrestrial ones. 

                 The heterogeneity and fragmentation of the land masses (particularly that associated with the breakup of the “supercontinent” of Gondwana from 180 Ma) is important in explaining why there are more species in terrestrial systems than in marine ones. Finally, the extreme fragmentation and isolation of freshwater bodies seems key to why these are so diverse for their area.

Biogeographic realms and ecoregions

                 Of the terrestrial realms, the Neotropics is generally regarded as overall being the most biodiverse, followed by the Afrotropics and Indo Malaya, although the precise ranking of these tropical regions depends on the way in which organismal diversity is measured. For example, for species the richest realm is the Neotropics for amphibians, reptiles, birds and mammals, but for families it is the Afrotropics for amphibians and mammals, the Neotropics for reptiles, and the Indo-Malayan for birds (MEA 2005). In parts, these differences reflect variation in the histories of the realms (especially mountain uplift and climate changes) and the interaction with the emergence and spread of the groups, albeit perhapscomplicated by issues of geographic consistency in the definition of higher taxonomic groupings.
 

              The Western Indo-Pacific and Central Indo-Pacific realms have been argued to be a center for the evolutionary radiation of many groups, and are thought to be perhaps the global hotspot of marine species richness and endemism (Briggs 1999; Roberts et al. 2002). With a shelf area of 6 570 000 km2, which is considered to be a significant influence, it has more than 6000 species of molluscs, 800 species of echinoderms, 500 species of hermatypic (reef forming) corals, and 4000 species of fish (Briggs 1999). At the scale of terrestrial ecoregions, the most speciose for amphibians and reptiles are in the Neotropics, for birds in Indo-Malaya, Neotropics and Afrotropics, and for mammals in the Neotropics, Indo-Malaya, Nearctic, and Afrotropics. Amongst the freshwater ecoregions, those with globally high richness of freshwater fish include the Brahmaputra, Ganges, and Yangtze basins in Asia, and large portions of the Mekong, Chao Phraya, and Sitang and Irrawaddy; the lower Guinea in Africa; and the ParanĂ¡ and Orinoco in South America (Abell
et al. 2008).
Altitude and Depth

                  Variations in depth in marine systems and altitude in terrestrial ones are small relative to the areal coverage of these systems. The oceans average c.3.8 km in depth but reach down to 10.9 km (Challenger Deep), and land averages 0.84 km in elevation and reaches up to 8.85 km (Mt. Everest). Nonetheless, there are profound changes in organismal diversity both with depth and altitude. This is in large part because of the environmental differences (but also the effects of area and isolation), with some of those changes in depth or altitude of a few hundred meters being similar to those experienced over latitudinal distances of several hundred kilometers (e.g. temperature). In both terrestrial and marine (pelagic and benthic) systems, species richness across a wide variety of taxonomic groups has been found
progressively to decrease with distance from sea level (above or below) and to show a pronounced hump-shaped pattern in which it first increases and then declines (Angel 1994; Rahbek 1995; Bryant et al. 2008). The latter pattern tends to become more apparent when the effects of variation in area have been accounted for, and is probably the more general, although in either case richness tends to be lowest at the most extreme elevations or depths. Microbial assemblages can be found at considerable depths (in some instances up to a few kilometers) below the terrestrial land surface and the seafloor, often exhibiting unusual metabolic capabilities (White et al. 1998; D’Hondt et al. 2004). Knowledge of these assemblages remains, however, extremely poor, given the physical challenges of sampling and of doing so without contamination from other sources.

0 comments:

Post a Comment

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More