Wednesday, January 11, 2012

Processes that affect species in fragmented landscapes

                The size of any population is determined by the balance between four parameters: births, deaths, immigration, and emigration. Population size is increased by births and immigration of individuals, while deaths and emigration of individuals reduce population size. In fragmented landscapes, these population parameters are influenced by several categories of processes.    

Deterministic processes

                Many factors that affect populations in fragmented landscapes are relatively predictable in their effect. These factors are not necessarily a direct consequence of habitat fragmentation, but arise from land uses typically associated with subdivision. Populations may decline due to deaths of individuals from the use of pesticides, insecticides or other chemicals; hunting by humans; harvesting and removal of plants; and construction of roads with ensuing road kills of animals. For example, in Amazonian forests, subsistence hunting by people compounds the effects of forest fragmentation for large vertebrates such as the lowland tapir (Tapir terrestris) and white-lipped peccary (Tayassu pecari), and contributes to their local extinction (Peres 2001). Commonly, populations are also affected by factors such as logging, grazing by domestic stock, or altered disturbance regimes that modify the quality of habitats and affect population growth. For example, in Kibale National Park, an isolated forest in Uganda, logging has resulted in long-term reduction in the density of groups of the blue monkey (Cercopithecus mitza) in heavily logged areas: in contrast, populations of black and white colobus (Colobus guereza) are higher in regrowth forests than in unlogged forest (Chapman et al. 2000). Deterministic processes are particularly important influences on the status of plant species in fragments (Hobbs and Yates 2003).

Isolation

                 Isolation of populations is a fundamental consequence of habitat fragmentation: it affects local populations by restricting immigration and emigration. Isolation is influenced not only by the distance between habitats but also by the effects of human land-use on the ability of organisms to move (or for seeds and spores to be dispersed) through the landscape. Highways, railway lines, and water channels impose barriers to movement, while extensive croplands or urban development create hostile environments for many organisms to move through. Species differ in sensitivity to isolation depending on their type of movement, scale of movement, whether they are nocturnal or diurnal, and their response to landscape change. Populations of one species may be highly isolated, while in the same landscape individuals of another species can move freely.Isolation affects several types of movements, including: (i) regular movements of individuals between parts of the landscape to obtain different requirements (food, shelter, breeding sites); (ii) seasonal or migratory movements of species at regional, continental or inter-continental scales; and (iii) dispersal movements (immigration, emigration) between fragments, which may supplement population numbers, increase the exchange of genes, or assist recolonization if a local population has disappeared. In Western Australia, dispersal movements of the blue breasted fairy-wren (Malurus pulcherrimus) are affected by the isolation of fragments (Brooker and Brooker 2002). There is greater mortality of individuals during dispersal in poorly connected areas than in well-connected areas, with this difference in survival during dispersal being a key factor determining the persistence of the species in local areas. For many organisms, detrimental effects of isolation are reduced, at least in part, by habitat components that enhance connectivity in the landscape (Saunders and Hobbs 1991; Bennett 1999). These include continuous “corridors” or “stepping stones” of habitat that assist movements (Haddad et al. 2003), or human land-uses (such as coffee-plantations, scattered trees in pasture) that may be relatively benign environments for many species (Daily et al. 2003). In tropical regions, one of the strongest influences on the persistence of species in forest fragments is their ability to live in, or move through, modified “countryside” habitats (Gascon et al. 1999; Sekercioglu et al. 2002).

Stochastic processes

                When populations become small and isolated, they become vulnerable to a number of stochastic (or chance) processes that may pose little threat to larger populations. Stochastic processes include
the following.
  • Stochastic variation in demographic parameters such as birth rate, death rate and the sex ratio of offspring. 
  • Loss of genetic variation, which may occur due to inbreeding, genetic drift, or a founder effect from a small initial population size. A decline in genetic diversity may make a population more vulnerable to recessive lethal alleles or to changing environmental conditions. 
  • Fluctuations in the environment, such as variation in rainfall and food sources, which affect birth and death rates in populations. 
  •  Small isolated populations are particularly vulnerable to catastrophic events such as flood, fire, drought or hurricanes. A wildfire, for example, may eliminate a small local population where as in extensive habitats some individuals survive and provide a source for recolonization.

0 comments:

Post a Comment

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More